The integral stable allocation problem on graphs
نویسندگان
چکیده
منابع مشابه
Integral Stable Allocation Problem on Graphs
As a generalisation of the stable matching problem Bäıou and Balinski [3] defined the stable allocation problem for bipartite graphs, where both the edges and the vertices may have capacities. They constructed a so-called inductive algorithm, that always finds a stable allocation in strongly polynomial time. Here, we generalise their algorithm for non-bipartite graphs with integral capacities. ...
متن کاملThe Generalized Stable Allocation Problem
We introduce and study the generalized stable allocation problem, an “ordinal” variant of the well-studied generalized assignment problem in which we seek a fractional assignment that is stable (in the same sense as in the classical stable marriage problem) with respect to a two-sided set of ranked preference lists. We develop an O(m logn) algorithm for solving this problem in a bipartite assig...
متن کاملOn distance integral graphs
The distance eigenvalues of a connected graph G are the eigenvalues of its distance matrix D, and they form the distance spectrum of G. A graph is called distance integral if its distance spectrum consists entirely of integers. We show that no nontrivial tree can be distance integral. We characterize distance integral graphs in the classes of graphs similar to complete split graphs, which, toge...
متن کاملOn integral sum graphs
A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f (u) + f (v) = f (w) for some node w in G. A node of G is called a saturated node if it is adjacent to every other node of G. We show that any integral sum graph which is not K3 has at most two saturated ...
متن کاملThe Problem of Optimal Asset Allocation with Stable Distributed Returns
This paper discusses two optimal allocation problems. We consider different hypotheses of portfolio selection with stable distributed returns for each of them. In particular, we study the optimal allocation between a riskless return and risky stable distributed returns. Furthermore, we examine and compare the optimal allocation obtained with the Gaussian and the stable non-Gaussian distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Optimization
سال: 2010
ISSN: 1572-5286
DOI: 10.1016/j.disopt.2010.02.002